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Abstract Difference systems of sets (DSS) are combinatorial configurations that arise in connection

with code synchronization. This paper proposes a new method to construct DSSs, which uses known
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number. As applications, we obtain some new optimal DSSs.
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1 Introduction

Let Zν denote the residue additive group of integers modulo ν, that is, Zν = {0, 1, . . . , ν − 1}.
A difference system of set (DSS) with parameters (ν, {τ0, τ1, . . ., τp−1}, p, ρ) is a collection P
of p disjoint subsets Bi ⊂ Zν , |Bi| = τi, 0 ≤ i < p − 1, such that the multiset

ΔP := {(a − b)(modν) : a ∈ Bi, b ∈ Bj , i �= j, 0 ≤ i, j ≤ p − 1} (1.1)

contains every number k (1 ≤ k ≤ ν − 1), at least ρ times, and is denoted by DSS(ν, {τ0, τ1,
. . ., τp−1}, p, ρ). A DSS is called perfect if every non-zero element of Zν appears exactly ρ

times in the multi-set (1.1). A DSS is said to be regular if all the subsets Bi are of the same
size w and is denoted by (ν, w, p, ρ).

DSSs over a cyclic group were first introduced by Levenshtein [8] and were used for the
construction of codes that allow for synchronization in the presence of errors in [7]. Let p be
a prime power. Then a DSS(ν, {τ0, τ1, . . ., τp−1}, p, ρ) generates a comma-free code over F ν

p

of index ρ with ν − r information bits (see [5]), where F ν
p is a set of all vectors of length ν

over a finite field Fp of p elements and r =
∑p−1

i=0 |τi|. In this sense, the number r is called
redundancy and p is called the base of the resulting comma-free code over F ν

p . Clearly, if ν, p, ρ

are fixed, then the redundancy r is required to be as small as possible for applying the DSS to
code synchronization.
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Let rp(ν, ρ) denote the minimum redundancy r of a DSS for the given parameters ν, p and
ρ. A DSS is called optimal if it has minimum redundancy rp(ν, ρ) for the given parameters ν, p

and ρ. Levenshtein [8] proved the following lower bound on rp(ν, ρ):

rp(ν, ρ) ≥
√

pρ(ν − 1)
p − 1

, (1.2)

where the equality holds if and only if the DSS is perfect and regular. In the sequel, this bound
is referred to as Levenshtein bound.

The Levenshtein bound of (1.2) cannot be achieved in many cases. If the right-hand side
of the inequality (1.2) is not an integer, we get

rp(ν, ρ) ≥
⌈√

pρ(ν − 1)
p − 1

⌉

, (1.3)

where �x� denotes the ceiling function. It is easy to see that the inequality (1.3) is an equality
if and only if

rp(ν, ρ) − 1 <

√
pρ(ν − 1)

p − 1
≤ rp(ν, ρ). (1.4)

In the following, we can give a sufficient condition that a DSS is optimal.

Lemma 1.1 ([3]) If a DSS(ν, {τ0, τ1, . . ., τp−1}, p, ρ) satisfies
√

pρ(ν − 1)
p − 1

> r − 1, (1.5)

then it is optimal.

Based on cyclotomic classes, difference sets, and balanced generalized weighting matrices,
Tonchev obtained several classes of DSSs (see [11, 12]). Later, Mutoha and Tonchev [9] extended
the construction in [12]. Fuji-Hara et al. [4] constructed DSSs from hyperplane line spreads
and hyperplanes. Algorithms for constructing optimal DSSs with given parameters n, q, ρ were
developed in [13, 14]. Fan et al. [3] gave some constructions of DSSs from cyclic designs. Ding
[2] constructed three classes of optimal DSSs. These three classes are based on perfect nonlinear
functions, power functions, and ternary sequences with ideal autocorrelation, respectively. Zhou
and Tang [16] constructed optimal and perfect difference systems of sets from q-ary sequences
with a difference-balanced property. Very recently, [15] give a recursive construction for a DSS
with smaller redundancy from a partition-type DSS and a difference set, and Lei, Fan [6] give
some recursive constructions of DSSs by using the partition-type cyclic difference packing.

In this paper, using the partitions of cosets of Zν relative to subgroup H of order k, where
ν = km is a composite number, we give a recursive constructions of DSSs from the known
difference sets and DSSs. As an application, we obtain some new infinite classes of optimal
DSSs.

2 A Recursive Construction of DSS

In this section, we will give a recursive construction of DSSs by using partition of cosets of Zν ,
difference sets and DSSs.
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Let A, B be given multisets of Zn and λ be a positive integer. We define some multisets as
follows:

Z∗
n = Zn\{0}.

ΔA = {x − y : x, y ∈ A, x �= y}.
Δ(A, B) = {x − y : x ∈ A, y ∈ B}.
λA means every element of A repeats exactly λ times.
A ≥ λB means every element of B appears at least λ times in A.
A + B = A ∪ B means their union as a multiset.
Let Zν be the additive group of integers modulo ν, where ν is a composite number. Set

ν = km, where k and m are positive integers.
We take a subgroup A0 of order k of Zν as follows

A0 = {0, m, 2m, . . . , (k − 1)m}.
Let σ be the mapping of Zν : σ : x 
→ x + 1. Then all the cosets of Zν modulo A0 are given by
Ai = σi(A0), i ∈ Zm. Let

A = {Ai : i ∈ Zm}.
Obviously, for any Ai, Aj ∈ A, we have

ΔAi = ΔAj = kA∗
0.

Lemma 2.1 For any Ai, Aj ∈ A (i �= j), we have

Δ(Ai, Aj) = kAi−j .

Proof For any Ai, Aj ∈ A (i �= j),

Δ(Ai, Aj) = {x − y + i − j : x, y ∈ A0}
= {x − y + i − j : x �= y ∈ A0} + {x − x + i − j : x ∈ A0}
= σi−j(ΔA0) + |A0|{i − j}
= kσi−j(A∗

0) + k{i − j}
= k(Ai−j\{i − j}) + k{i − j}
= kAi−j . �

The following is our main theorem.

Theorem 2.2 Let ν = km with k and m positive integers. Let A = {Ai : i ∈ Zm} be
as defined above. Assume that there exists a cyclic (m, h, λ)-difference set H over Zm, and
a DSS(k, {s1, . . . , sn}, n, ρ′) over Zk, which satisfies

∑n
i=1 si = k. Then there exists a DSS

(ν, {s1, . . . , s1︸ ︷︷ ︸
h0

, . . . , sn, . . . , sn︸ ︷︷ ︸
h0

, k, . . . , k
︸ ︷︷ ︸

h−h0

}, h + (n − 1)h0, ρ) over Zν , where 1 ≤ h0 ≤ h, ρ =

min{kλ, h0ρ
′}.

Proof Let H be a cyclic (m, h, λ)-difference set over Zm. By the definition of a difference set,
we have

ΔH = λZ∗
m.
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Let P0 = {Q1, . . . , Qn} be a DSS(k, {s1, . . . , sn}, n, ρ′) over Zk, where |Qi| = si, and
∑n

i=1 si = k. According to the definition of DSS, we have

ΔP0 =
∑

1≤i�=j≤n

{x1 − x2 : x1 ∈ Qi, x2 ∈ Qj} ≥ ρ′Z∗
k .

Let D0,1 = {mx : x ∈ Q1}, D0,2 = {mx : x ∈ Q2}, . . . , D0,n = {mx : x ∈ Qn}. Obviously,
∑n

i=1 D0,i = A0, and
∑

1≤i1 �=i2≤n

Δ(D0,i1 , D0,i2)

=
∑

1≤i1 �=i2≤n

{mx1 − mx2 : x1 ∈ Qi1 , x2 ∈ Qi2}

≥ ρ′{mx : x ∈ Z∗
k} = ρ′A∗

0.

Let Dj,1 = {mx + j : x ∈ Q1}, Dj,2 = {mx + j : x ∈ Q2}, . . . , Dj,n = {mx + j : x ∈ Qn}.
Similarly, for j ∈ Zm, we have

∑n
i=1 Dj,i = Aj , and

∑

1≤i1 �=i2≤n

Δ(Dj,i1 , Dj,i2) =
∑

1≤i1 �=i2≤n

Δ(D0,i1 , D0,i2) ≥ ρ′A∗
0.

We take a subset H0 of H, where |H0| = h0. Suppose

H0 = {j0, j1, j2, . . . , jh0−1},

where j0 < j1 < j2 < · · · < jh0−1, and

H\H0 = {l1, l2, . . . , lh−h0},

where l1 < l2 < · · · < lh−h0 . Now let us construct our DSS. Let

Bt,1 = Djt,1 = {mx + jt : x ∈ Q1},
Bt,2 = Djt,2 = {mx + jt : x ∈ Q2},

...

Bt,n = Djt,n = {mx + jt : x ∈ Qn},

where 0 ≤ t ≤ h0 − 1, jt ∈ H0 and

P = {Bi,1, Bi,2, . . . , Bi,n : 0 ≤ i ≤ h0 − 1} ∪ {Ali : li ∈ H\H0}.

Since

ΔP =
h0−1∑

t1=0

∑

1≤s1 �=s2≤n

Δ(Bt1,s1 , Bt1,s2)

+
n∑

s1=1

∑

0≤t1 �=t2≤h0−1

Δ(Bt1,s1 , Bt2,s1) +
∑

1≤t1 �=t2≤h0−1
1≤s1 �=s2≤n

Δ(Bt1,s1 , Bt2,s2)

+
h−h0∑

i=1

h0−1∑

t1=0

n∑

s1=1

Δ(Bt1,s1 , Ali) +
h−h0∑

i=1

h0−1∑

t1=0

n∑

s1=1

Δ(Ali , Bt1,s1)
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+
∑

1≤i�=j≤h−h0

Δ(Ali , Alj )

=
h0−1∑

t1=0

∑

1≤s1 �=s2≤n

Δ(Bt1,s1 , Bt1,s2)

+
∑

i,j∈H0
i�=j

Δ(Ai, Aj) +
∑

i∈H0
j∈H\H0

Δ(Ai, Aj) +
∑

i∈H0
j∈H\H0

Δ(Aj , Ai) +
∑

i,j∈H\H0
i�=j

Δ(Ai, Aj)

=
h0−1∑

t1=0

∑

1≤s1 �=s2≤n

Δ(Bt1,s1 , Bt1,s2) +
∑

i�=j∈H

Δ(Ai, Aj)

≥
h−h0∑

i=1

ρ′A∗
0 +

∑

i,j∈H
i�=j

kAi−j

= h0ρ
′A∗

0 + λk(Zν\A0),

P is a DSS with parameters (ν, {s1, . . . , s1︸ ︷︷ ︸
h0

, . . . , sn, . . . , sn︸ ︷︷ ︸
h0

, k, . . . , k
︸ ︷︷ ︸

h−h0

}, h+(n−1)h0, ρ) over Zν . �

The following example illustrates Theorem 2.2.

Example 2.3 Let k = 7, m = 19, and ν = 133. Then cosets Ai of Z133, 0 ≤ i ≤ 18, are the
following:

A0 = {0, 19, 38, 57, 76, 95, 114}, A1 = {1, 20, 39, 58, 77, 96, 115},
A2 = {2, 21, 40, 59, 78, 97, 116}, A3 = {3, 22, 41, 60, 79, 98, 117},
A4 = {4, 23, 42, 61, 80, 99, 118}, A5 = {5, 24, 43, 62, 81, 100, 119},
A6 = {6, 25, 44, 63, 82, 101, 120}, A7 = {7, 26, 45, 64, 83, 102, 121},
A8 = {8, 27, 46, 65, 84, 103, 122}, A9 = {9, 28, 47, 66, 85, 104, 123},
A10 = {10, 29, 48, 67, 86, 105, 124}, A11 = {11, 30, 49, 68, 87, 106, 125},
A12 = {12, 31, 50, 69, 88, 107, 126}, A13 = {13, 32, 51, 70, 89, 108, 127},
A14 = {14, 33, 52, 71, 90, 109, 128}, A15 = {15, 34, 53, 72, 91, 110, 129},
A16 = {16, 35, 54, 73, 92, 111, 130}, A17 = {17, 36, 55, 74, 93, 112, 131},
A18 = {18, 37, 56, 75, 94, 113, 132}.

Let H be a cyclic (19, 9, 4)-difference set over Z19 and {Q1, Q2} be a perfect DSS(7, {3, 4}, 2, 4)
over Z7,

H = {1, 4, 5, 6, 7, 9, 11, 16, 17}, Q1 = {1, 2, 4}, Q2 = {0, 3, 5, 6}.

Case 1 We take

H0 = {1, 4, 5, 6, 7, 9, 11}

and h0 = |H0| = 7. From the above definition of Dj,i, we have

B01 = {20, 39, 77}, B02 = {1, 58, 96, 115},
B11 = {23, 42, 80}, B12 = {4, 61, 99, 118},
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B21 = {24, 43, 81}, B22 = {5, 62, 100, 119},
B31 = {25, 44, 82}, B32 = {6, 63, 101, 120},
B41 = {26, 45, 83}, B42 = {7, 64, 102, 121},
B51 = {28, 47, 85}, B52 = {9, 66, 104, 123},
B61 = {30, 49, 87}, B62 = {11, 68, 106, 125}.

Let
P1 = {B01, . . . , B61, B02, . . . , B62, A16, A17}.

Since
ρ = kλ = h0ρ

′ = 28,

by the proof of Theorem 2.2, we get a perfect DSS(133, {3, . . ., 3, 4, . . . , 4, 7, 7}, 16, 28) over
Z133. A direct calculation can also confirm it. According to the inequality (1.5) and

√
pρ(ν − 1)

p − 1
=

√
16 × 28 × (133 − 1)

16 − 1
≈

√
3942 > r − 1 = 62,

the DSS is optimal.

Case 2 We take
H0 = H = {1, 4, 5, 6, 7, 9, 11, 16, 17}

with h0 = |H0| = 9. From the definition of Dj,i, we have

B71 = {35, 54, 92}, B72 = {16, 73, 111, 130},
B81 = {36, 55, 93}, B82 = {17, 74, 112, 131}.

Let
P2 = {B01, . . . , B81, B02, . . . , B82}.

Because kλ = 28, h0ρ
′ = 36, it follows that ρ = 28. Thus we get a DSS(133, {3, . . . , 3, 4, . . . , 4},

18, 28) over Z133. According to the inequality (1.5), since
√

pρ(ν − 1)
p − 1

=

√
18 × 28 × (133 − 1)

18 − 1
≈

√
3913 > r − 1 = 62,

this DSS is optimal.

3 Some Results on Optimal DSSs

In this section, we apply Theorem 2.2 to some known DSSs and difference sets to obtain some
new infinite classes of optimal DSSs. First, we give some known DSSs and cyclic difference sets,
which are needed in our construction.

Lemma 3.1 ([3]) Let k = qt+1−1
q−1 be an odd integer, where q is a prime power and t is a

positive integer. Then there exists a perfect DSS(k, {1, 2, . . . , 2}, k+1
2 , k − 1) over Zk.

Lemma 3.2 ([3]) Suppose k ≡ 3 (mod 4) is a positive integer such that there exists a Hadam-
ard-difference set. Then there exists a DSS(k, {k−1

2 , k+1
2 }, 2, k+1

2 ) over Zk.
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Lemma 3.3 ([1]) Let k be an odd prime. Then there exists a DSS(k, k−1
2 , 2, k−1

2 ) over Zk.

Corollary 3.4 ([1]) Let k be an odd prime. Then there exists a DSS(k, {1, k−1
2 , k−1

2 }, 3,
k+3
2 ) over Zk.

Lemma 3.5 ([10]) Let m = qt+1−1
q−1 , where q is a prime power and t is a positive integer.

Then there exists a cyclic (m, m − 1, m − 2)-difference set over Zm.

Lemma 3.6 ([10]) Let m = qt+1−1
q−1 , where q is a prime power, t is an integer and t ≥ 2. Then

there exists a cyclic ( qt+1−1
q−1 , qt−1

q−1 , qt−1−1
q−1 )-difference set over Zm.

Lemma 3.7 ([10]) Let q be a prime power. Then there exists a (q2 + q +1, q +1, 1)-difference
set over Zq2+q+1.

Lemma 3.8 ([10]) Let m = 4q − 1 be a prime. Then the quartic residues in Zm form a
(4q − 1, 2q − 1, q − 1)-difference set over Zm.

Theorem 3.9 Let k = m = qt+1−1
q−1 be an odd integer and ν = km = ( qt+1−1

q−1 )2, where q is a
prime power and t is a positive integer. Then there exists an optimal DSS(ν, {2, . . ., 2, 1, . . .,
1}, (qt+1−q)(qt+1+q−2)

2(q−1)2 , (qt+1−1)(qt+1−2q+1)
(q−1)2 ) over Zν .

Proof Apply Lemmas 3.1 and 3.5 to Theorem 2.2. When h0 = m − 1, we obtain the DSS in
Theorem 3.9. Regarding the optimality of the DSS, we need to discuss whether the following
parameters satisfy the inequality (1.5).

ν =
(

qt+1 − 1
q − 1

)2

, p =
(qt+1 − q)(qt+1 + q − 2)

2(q − 1)2
,

ρ =
(qt+1 − 1)(qt+1 − 2q + 1)

(q − 1)2
, r =

(qt+1 − 1)(qt+1 − q)
(q − 1)2

.

That is, we need to discuss when the following inequality holds:
√
√
√
√

(qt+1−q)(qt+1+q−2)
2(q−1)2 · (qt+1−1)(qt+1−2q+1)

(q−1)2 · [( qt+1−1
q−1 )2 − 1]

(qt+1−q)(qt+1+q−2)
2(q−1)2 − 1

>
(qt+1 − 1)(qt+1 − q)

(q − 1)2
− 1.

(3.1)

In fact, the inequality (3.1) can be simplified as follows:

−1 +
2q (−1 + qt)

(−1 + q1+t
) (−2 + q + q1+t

)
(1 + q (−2 + qt))

(−1 + q)2 (−2 + q (6 − 3q − 2qt + q1+2t))
> 0.

It is easy to see that

2q
(−1 + qt

) (−1 + q1+t
) (−2 + q + q1+t

) (
1 + q

(−2 + qt
))

> 0,

(−1 + q)2 > 0

always holds, while q is a prime power and t is a positive integer.

If q = 2 and t > 0,

−2 + q
(
6 − 3q − 2qt + q1+2t

)
= −2 + 2

(
21+2t − 2t+1

)
= −2 + 2t+2(2t − 1) > 0.
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If q ≥ 3 and t > 0,

−2 + q
(
6 − 3q − 2qt + q1+2t

)
= −2 + q

(
6 + q(−3 + qt−1(−2 + qt+1))

)
> 0.

To sum up, the inequality (3.1) always holds while q is a prime power and t is a positive integer.
So the resultant DSS is optimal. �

Theorem 3.10 Suppose k ≡ 3 (mod 4) is a positive integer such that there exists a Hadam-
ard-difference set. Let m = qt+1−1

q−1 , ν = km = k(qt+1−1)
q−1 , where q is a prime power, t ≥ 2 is an

integer. Then we have the following :
(a) If k ≤ 2q + 6, there exists an optimal DSS(ν, {k−1

2 , . . ., k−1
2 , k+1

2 , . . ., k+1
2 , k, . . ., k},

(qt+2qt−1−3)
q−1 , k(qt−1−1)

q−1 ) over Zν .
(b) If k ≤ q + 3 and q ≥ 3, there exists an optimal DSS(ν, {k−1

2 , . . ., k−1
2 , k+1

2 , . . ., k+1
2 ,

k, . . ., k}, (qt+3qt−1−4)
q−1 , k(qt−1−1)

q−1 ) over Zν .
(c) If k ≤ 6q+20

9 and q ≥ 5, there exists an optimal DSS(ν, {k−1
2 , . . ., k−1

2 , k+1
2 , . . ., k+1

2 ,
k, . . ., k}, (qt+4qt−1−5)

q−1 , k(qt−1−1)
q−1 ) over Zν .

Proof Apply Lemmas 3.2 and 3.6 to Theorem 2.2. When h0 = 2(qt−1−1)
q−1 , we obtain the DSS

of (a). When h0 = 3(qt−1−1)
q−1 and q ≥ 3, we obtain the DSS of (b). When h0 = 4(qt−1−1)

q−1 and
q ≥ 5, we obtain the DSS of (c). In the following, we discuss the optimality of these DSSs
separately.

(i) Regarding the optimality of DSS of (a), we need to discuss whether the following pa-
rameters satisfy (1.5).

ν =
k(qt+1 − 1)

q − 1
, p =

(qt + 2qt−1 − 3)
q − 1

, ρ =
k(qt−1 − 1)

q − 1
), r =

k(qt − 1)
q − 1

.

That is, we need to discuss when the following inequality holds:
√
√
√
√

qt+2qt−1−3
q−1 · k(qt−1−1)

q−1 · [k(qt+1−1)
q−1 − 1]

qt+2qt−1−3
q−1 − 1

>
k(qt − 1)

q − 1
− 1. (3.2)

In fact, the inequality (3.2) can be simplified as follows:

(−q + 2qt − q1+t)k2 − (q + 2q2 + 2qt − 3q1+t − 2q2+t)k − q
(−2 + q + q2

)
> 0. (3.3)

Let k1, k2, where k1 ≤ k2, be the solution of the following equation:

(−q + 2qt − q1+t)k2 − (q + 2q2 + 2qt − 3q1+t − 2q2+t)k − q
(−2 + q + q2

)
= 0. (3.4)

Note that
(−q + 2qt − q1+t) < 0.

Clearly, when k1 < k < k2, (3.3) holds. When k = 1, (3.3) holds, so we have k1 < 1. Thus, we
have

k2 =
q + 2q2 + 2qt − 3q1+t − 2q2+t

−q + 2qt − q1+t
− k1

≥ q + 2q2 + 2qt − 3q1+t − 2q2+t

−q + 2qt − q1+t
− 1
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≥ 2q + 6.

It is not hard to get that (3.2) always holds if k ≤ 2q +6. So the resultant DSS is optimal when
k ≤ 2q + 6.

(ii) Regarding the optimality of DSS of (b), we need to discuss when the following inequality
holds: √

√
√
√

qt+3qt−1−4
q−1 · k(qt−1−1)

q−1 · [k(qt+1−1)
q−1 − 1]

qt+3qt−1−4
q−1 − 1

>
k(qt − 1)

q − 1
− 1. (3.5)

In fact, (3.5) can be simplified as follows:

−(2qt − 3qt−1 + 1)k2 + (2qt+1 + 5qt − 3qt−1 − 2q − 2)k − (q + 3)(q − 1) > 0.

Similar to the discussion of (i), it is not hard to get that (3.5) always holds if k ≤ q + 3 and
q ≥ 3. So the resultant DSS is optimal when k ≤ q + 3 and q ≥ 3.

(iii) Regarding the optimality of DSS of (c), we need to discuss when the following inequality
holds: √

√
√
√

qt+4qt−1−5
q−1 · k(qt−1−1)

q−1 · [k(qt+1−1)
q−1 − 1]

qt+4qt−1−5
q−1 − 1

>
k(qt − 1)

q − 1
− 1. (3.6)

In fact, (3.6) can be simplified as follows:

−(3qt − 4qt−1 + 1)k2 + (2qt+1 + 7qt − 4qt−1 − 2q − 3)k + (q + 4)(q − 1) > 0.

Similar to the discussion of (i), it is not hard to get that (3.6) always holds if k ≤ 6q+20
9 and

q ≥ 5. So the resultant DSS is optimal when k ≤ 6q+20
9 and q ≥ 5. �

Theorem 3.11 Suppose k ≡ 3 (mod 4) is a positive integer such that there exists a Hadam-
ard-difference set. Let m = q2 + q +1, ν = km = k(q2 + q +1), where q is a prime power. Then
we have the following :

(a) If k ≤ 2q + 6, there exists an optimal DSS(ν, {k−1
2 , . . ., k−1

2 , k+1
2 , . . ., k+1

2 , k, . . . , k},
q + 3, k) over Zν .

(b) If k ≤ q + 3, there exists an optimal DSS(ν, {k−1
2 , . . ., k−1

2 , k+1
2 , . . ., k+1

2 , k, . . ., k},
q + 4, k) over Zν .

Proof Apply Lemmas 3.2 and 3.7 to Theorem 2.2. When h0 = 2, we obtain the DSS of (a).
When h0 = 3, we obtain the DSS of (b).

Regarding the optimality of DSS of (a) and (b), we need to discuss when the following
inequality holds:

√
(q + 1 + h0) · k · [k(q2 + q + 1) − 1]

q + h0
> (q + 1)k − 1. (3.7)

In fact, (3.7) can be simplified as follows:

[(1 − h0)q + 1]k2 + [2q2 + 2qh0 + q + h0 − 1]k − q − h0 > 0. (3.8)

When h0 = 2, (3.8) can be simplified as follows:

(1 − q)k2 + (2q2 + 5q + 1)k − q − 2 > 0.



www.manaraa.com

2270 Zhang G. S. and Wang H. R.

Similar to the discussion of (i) in Theorem 3.10, it is not hard to get that (3.7) always holds if
k ≤ 2q + 6. So, the resultant DSS is optimal when k ≤ 2q + 6.

When h0 = 3 , (3.8) can be simplified as follows:

(1 − 2q)k2 + (2q2 + 7q + 2)k − q − 3 > 0.

Similar to the discussion of (i) in Theorem 3.10, it is not hard to get that (3.8) always holds if
k ≤ q + 3. So, the resultant DSS is optimal when k ≤ q + 3. �

Theorem 3.12 Suppose k ≡ 3 (mod 4) is a positive integer such that there exists a Hadam-
ard-difference set. Let m = 4q − 1 be a prime, ν = km = k(4q − 1). Then we have the
following :

(a) If k ≤ 2q − 3, there exists an optimal DSS(ν, {k−1
2 , . . . , k−1

2 , k+1
2 ,. . ., k+1

2 , k, k},
4q − 4, k(q − 1)) over Zν . In particular, when k = 2q − 3, the resultant DSS is perfect.

(b) If k ≤ 12q−6, there exists an optimal DSS(ν, {k−1
2 , . . ., k−1

2 , k+1
2 , . . ., k+1

2 , k}, 4q−3,
k(q − 1)) over Zν .

(c) If k ≤ 6q − 5, there exists an optimal DSS(ν, {k−1
2 , . . ., k−1

2 , k+1
2 , . . ., k+1

2 }, 4q − 2,
k(q − 1)) over Zν .

Proof Apply Lemmas 3.2 and 3.8 to Theorem 2.2. When h0 = 2q − 3 and k ≤ 2q − 3, we
obtain the DSS of (a). When h0 = 2q − 2, we obtain the DSS of (b). When h0 = 2q − 1, we
obtain the DSS of (c). In the following, we discuss the optimality of these DSSs separately.

(i) Regarding the optimality of DSS of (a), we need to discuss when the following inequality
holds: √

(4q − 4) · k(q − 1) · [k(4q − 1) − 1]
4q − 5

> (2q − 1)k − 1. (3.9)

In fact, (3.9) can be simplified as follows:

k2 + (12q2 − 20q + 6)k − 4q + 5 > 0. (3.10)

It is easy to see that (3.10) always holds for any give q > 1 and k. So the resultant DSS is
optimal.

(ii) Regarding the optimality of DSS of (b), we need to discuss when the following inequality
holds: √

(4q − 3) · k(q − 1) · [k(4q − 1) − 1]
4q − 4

> (2q − 1)k − 1. (3.11)

In fact, (3.11) can be simplified as follows:

−(q − 1)k2 + (q − 1)(12q − 5)k − 4q + 4 > 0.

Similar to the discussion of (i) in Theorem 3.10, it is not hard to get that (3.11) always holds
if k ≤ 12q − 6. So the resultant DSS is optimal, when k ≤ 12q − 6.

(iii) Regarding the optimality of DSS of (c), we need to discuss when the following inequality
holds: √

(4q − 2) · k(q − 1) · [k(4q − 1) − 1]
4q − 3

> (2q − 1)k − 1. (3.12)
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In fact, (3.12) can be simplified as follows:

−(2q − 1)k2 + (2q − 1)(6q − 4)k − 4q + 3 > 0.

Similar to the discussion of (i) in Theorem 3.10, it is not hard to get that (3.12) always holds
if k ≤ 6q − 5. So, the resultant DSS is optimal when k ≤ 6q − 5. �

Theorem 3.13 Let m = q2 + q + 1, ν = k(q2 + q + 1), where k is an odd prime, q is a prime
power. Then there exists a DSS(ν, {1, 1, k−1

2 , . . ., k−1
2 , k, . . ., k}, q + 5, k) over Zν . When

k ≤ 6q+20
9 , the resultant DSS is optimal.

Proof Apply Lemma 3.7 and Corollary 3.4 to Theorem 2.2. When h0 = 2, we obtain the DSS
of Theorem 3.13.

Regarding the optimality of the DSS, we need to discuss when the following inequality holds:
√

(q + 5) · k · [k(q2 + q + 1) − 1]
q + 4

> (q + 1)k − 1. (3.13)

In fact, (3.13) can be simplified as follows:

(−3q + 1)k2 + (2q2 + 9q + 3)k − q − 4 > 0.

Similar to the discussion of (i) in Theorem 3.10, it is not hard to get that (3.13) always holds
if k ≤ 6q+20

9 . So, the resultant DSS is optimal when k ≤ 6q+20
9 . �
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